Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

N-Methyl- N-(2-nitrophenyl)nitramine and N -methyl- N -(3-nitrophenyl)nitramine

Bartosz Zarychta, Anna Piecyk-Mizgała, Zdzisław Daszkiewicz and Jacek Zaleski*

Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland Correspondence e-mail: zaleski@uni.opole.pl

Received 8 March 2005
Accepted 6 July 2005
Online 23 July 2005

The structures of the two title isomeric compounds (systematic names: N-methyl- $N, 2$-dinitroaniline and N-methyl- $N, 3$-dinitroaniline, both $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{4}$) are slightly different because they exhibit different steric hindrances and hydrogen-bonding environments. The aromatic rings are planar. The $-\mathrm{N}(\mathrm{Me}) \mathrm{NO}_{2}$ and $-\mathrm{NO}_{2}$ groups are not coplanar with the rings. Comparison of the geometric parameters of the ortho, meta and para isomers together with those of N-methyl- N-phenylnitramine suggests that the position of the nitro group has a strong influence on the aromatic ring distortion. The crystal packing is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to the nitramine group.

Comment

Nitramines and related N-nitro compounds have attracted significant attention from researchers in view of their applications in rocket fuel and as explosives (Williams, 1982). The compounds of this series are particularly interesting since the nitro group in N -methyl- N -nitroaniline and its derivatives can undergo a rearrangement at elevated temperatures, under acid conditions or on photolysis (Growenlock et al., 1997). Owing to the presence of an $\mathrm{N}-\mathrm{N}$ bond, these compounds are also very active in photochemical reactions (Mialocq \& Stephenson, 1986), and their structures have been investigated in recent years (Daszkiewicz et al., 2000; Prezhdo et al., 2001; Zhukhlistova et al., 2002). In the molecular structures of typical secondary aromatic nitramines, there are two planar π electron fragments, viz. the aromatic ring and the nitramine $\left(\mathrm{NNO}_{2}\right)$ group, which are not coplanar. The π electrons of the nitramine group are not conjugated within the aromatic ring. The twisted conformation of N -methyl- N -phenylnitramines is probably a result of intermolecular interactions.

Our earlier investigations have been devoted to aromatic nitramines with selected substituents (Daszkiewicz et al., 1995, 2002). To obtain further information about the differences in
structures of the compounds substituted by a nitramine group, since the structure of N-methyl- N-(4-nitrophenyl)nitramine has already been published (Anulewicz et al., 1993), we have prepared the ortho and meta derivatives.

(I)

(II)

The molecular structures of N-methyl- N-(2-nitrophenyl)nitramine, (I), and N-methyl- N-(3-nitrophenyl)nitramine, (II), are shown in Figs. 1 and 2, respectively and selected geometric parameters are shown in Tables 1 and 3. In both molecules, the aromatic rings are slightly deformed by electronic and steric interactions. In (I), the average $\mathrm{C}-\mathrm{C}$ bond length is 1.389 (2) \AA, whereas in (II), it is 1.395 (2) \AA. The largest difference between the shortest and longest $\mathrm{C}-\mathrm{C}$ bonds is 0.031 (3) \AA in (I), whereas in (II), the difference is 0.011 (3) \AA. The bond-length difference is undoubtedly caused by the presence of the $-\mathrm{N}(\mathrm{Me}) \mathrm{NO}_{2}$ and $-\mathrm{NO}_{2}$ groups connected to atoms C 1 and C 2 . Such a distortion of the aromatic ring was not observed in the structure of unsubstituted N-methyl $-N$ phenylnitramine (Prezhdo et al., 2001), in which the $\mathrm{C}-\mathrm{C}$ bonds are in the range 1.364 (4)-1.376 (4) A.

Comparison of the geometric parameters of the ortho, meta and para isomers, together with those of N -methyl- N phenylnitramine, suggests that the position of the nitro group has a strong influence on the aromatic ring distortion. The presence of the nitro group in the meta position in (II) significantly increases the $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ angle [to 123.4 (1) ${ }^{\circ}$]. It should be noted that the two neighbouring $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles are decreased $\left[\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=117.5(1)^{\circ}\right.$ and $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=$ $\left.117.8(1)^{\circ}\right]$ and the two subsequent angles are slightly increased $\left[\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2=120.8(1)^{\circ}\right.$ and $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6=$ $\left.120.6(1)^{\circ}\right]$. Similar effects have also been found in N-methyl-N-(4-nitrophenyl)nitramine; the $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ angle is similarly increased [to $122.9(2)^{\circ}$], whereas the two neighbouring angles are decreased to 118.3 (2) ${ }^{\circ}$ (Anulewicz et al., 1993).

At the position in which the nitramine group is connected in (II), the $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$ angle is increased from 120 to $120.8(1)^{\circ}$;

Figure 1
The molecular structure of (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
in the para-substituted compound, the increase is larger [1.7 (2) ${ }^{\circ}$]. In (I), however, this angle is decreased by 1.4 (1) ${ }^{\circ}$. It should be mentioned that the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle to which the $-\mathrm{NO}_{2}$ group is connected and that to which the $-\mathrm{N}(\mathrm{Me}) \mathrm{NO}_{2}$ group is connected are quite similar [2.2 (1) ${ }^{\circ}$ for the ortho and para, but $2.6(1)^{\circ}$ for the meta compound]. Taking into account only the geometric structures of (I) and (II), it seems that the deformation of the aromatic ring is caused more by steric hindrance than by the π-electron interactions.

In both structures, the nitro groups are not coplanar with the aromatic rings; the group is twisted by 11.9 (2) ${ }^{\circ}$ for (I) and by 22.1 (2) ${ }^{\circ}$ for (II) with respect to the ring plane. A much smaller twist $\left[2.5(2)^{\circ}\right]$ is observed in the para isomer (Anulewicz et al., 1993). In the overcrowded structure of (I), the position of the nitro group causes an increase of the $\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{N} 12$ angle to $121.8(1)^{\circ}$ and a decrease of the $\mathrm{C} 3-\mathrm{C} 2-$ N 12 angle to 117.5 (1) ${ }^{\circ}$. In (II), both related angles are smaller than 120° [by 2.6 (1) and $0.8(1)^{\circ}$].

In both studied molecules, the $\mathrm{N}-\mathrm{NO}_{2}$ group is not coplanar with the aromatic ring, which suggests a lack of interaction between these two groups. In (I) and 4-nitro- N -methyl- N-phenylnitramine, the N-methylnitramine group is twisted along the $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}$ bond by -80.4 (1) and -72.3 (2) ${ }^{\circ}$, respectively. This is a characteristic feature of N-methyl- N-(4nitrophenyl)nitramine derivatives. It should be noted, however, that N-methyl- N-phenylnitramine has a smaller twist angle $\left[-66.3(2)^{\circ}\right]$, whereas in (II), the group is twisted by an even smaller angle $\left[-49.6(1)^{\circ}\right]$.

The bond lengths and angles of the nitramine group agree with the corresponding values found in N -methyl- N -(4nitrophenyl)nitramine. Atom N7 lies slightly out of the plane of the benzene ring [the deviation is 0.026 (1) \AA in (I) and 0.109 (1) \AA in (II)]. In (II), the sum of the valence angles around atom N 7 [360.0 (1) ${ }^{\circ}$] indicates trigonal hybridization of the amine N atom. In (I), however, this sum is 358.9 (1) ${ }^{\circ}$ and atom N7 lies 0.086 (1) \AA from the $\mathrm{C} 1 / \mathrm{N} 8 / \mathrm{C} 11$ plane.

The $\mathrm{N} 7-\mathrm{N} 8$ bond lengths $[1.349$ (2) \AA for (I) and 1.355 (1) \AA for (II)] have values intermediate between those of typical single $(1.45 \AA)$ and double $(1.25 \AA)$ bonds, as expected (Allen et al., 1995; Daszkiewicz et al., 2002). Similar

Figure 2
The molecular structure of (II), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
effects have also been observed in all derivatives of N-methyl-N-phenylnitramine (Cady, 1967; Prezhdo et al., 2001; Zhukhlistova et al., 2002).

In both title structures, the crystal packing is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Tables 2 and 4), forming an extended three-dimensional network in each case. The polarity of the nitramine group and the distribution of the partial charges influence the formation of hydrogen bonds. In both studied structures, the hydrogen bonds involve only the O atoms of the nitro group connected to atom N 7 . The NO_{2} group bound to the phenyl ring does not participate in the hydrogen-bonding scheme in either compound.

Experimental

For the preparation of (I), solid N-methyl-2-nitroaniline (3 g , 20 mmol) was added in portions to cold acetic anhydride (30 ml) containing nitric acid $\left(1.7 \mathrm{ml}, 41 \mathrm{mmol}, \mathrm{HNO}_{3}, d=1.5\right)$. The solution was kept for 30 min at room temperature and evaporated in vacuo (323 K). The residue was crystallized from methanol and recrystallized from ethanol, producing N-methyl- N-(2-nitrophenyl)nitramine, (I), as colourless crystals ($2.5 \mathrm{~g}, 63 \%$, m.p. 340-341 K). MS (m / z) (intensity): $197\left(M^{+}, 4\right), 151(97), 134(100), 121(11), 105(38)$, 93 (60), 77 (69); IR (KBr, cm^{-1}): 1530, $1523\left(v_{\mathrm{as}} \mathrm{N}-\mathrm{O}\right), 1345,1295\left(v_{\mathrm{s}}\right.$ $\mathrm{N}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.24-7.43(m, 4 \mathrm{H}$, aromatic H atoms), 3.74 ($s, 3 \mathrm{H}, N$-methyl group). N-Methyl- N-(3-nitrophenyl)nitramine, (II), was prepared according to the above procedure. The nitramine was obtained in 72% yield as colourless crystals (m.p. 347-348 K). MS (m / z) (intensity): $197\left(M^{+}, 2\right), 151$ (100), 122 (10), 105 (80), 93 (4), 77 (16); IR (KBr, cm^{-1}): $1528\left(v_{\text {as }} \mathrm{N}-\mathrm{O}\right), 1351,1291\left(v_{\mathrm{s}} \mathrm{N}-\mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.33-8.22(m, 2 \mathrm{H}), 7.74-7.67(m, 2 \mathrm{H}$, aromatic H atoms), 3.78 ($s, 3 \mathrm{H}, N$-methyl group).

Compound (I)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{4}$
$M_{r}=197.16$
Monoclinic, $P 2_{1} / n$
$a=7.0470$ (8) A
$b=14.4473$ (12) \AA
$c=8.1165$ (8) A
$\beta=90.814(8)^{\circ}$
$V=826.26(14) \AA^{3}$
$Z=4$
$D_{x}=1.585 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Oxford Diffraction Xcalibur
\quad diffractometer
ω scan
5344 measured reflections
1591 independent reflections
1294 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.030 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-17 \rightarrow 11 \\
& l=-10 \rightarrow 10
\end{aligned}
$$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.024 \text { (4) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA,^{\circ}$) for (I).

N7-N8	$1.349(2)$		
C6-C1-C2	$118.6(1)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.2(1)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 7$	$117.4(1)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.0(1)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 7$	$123.9(1)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.8(1)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.8(1)$	$\mathrm{N} 8-\mathrm{N} 7-\mathrm{C} 1$	$117.51(10)$
C3-C2-N12	$117.5(1)$	$\mathrm{N} 8-\mathrm{N} 7-\mathrm{C} 11$	$119.01(11)$
C1-C2-N12	$121.8(1)$	$\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 11$	$122.36(11)$
C2-C3-C4	$119.6(1)$		
C6-C1-N7-N8	$101.4(1)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 12-\mathrm{O} 13$	$-168.0(1)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 7-\mathrm{N} 8$	$-82.2(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 12-\mathrm{O} 14$	$-168.2(1)$
C3-C2-N12-O13	$11.8(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 12-\mathrm{O} 14$	$12.0(2)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 10^{\text {i }}$	0.95 (2)	2.46 (2)	3.336 (2)	155 (1)
C6-H6 . O $9^{\text {ii }}$	0.96 (2)	2.59 (2)	3.341 (2)	135 (1)
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 9^{\text {iii }}$	0.92 (2)	2.60 (2)	3.195 (2)	123 (1)

Symmetry codes: (i) $x, y, z+1$; (ii) $x-\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (iii) $-x+1,-y+1,-z+1$.

Compound (II)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{4}$
$M_{r}=197.16$
Monoclinic, $P 2_{1} / c$
$a=8.7322$ (11) A
$b=13.6510$ (16) \AA
$c=7.5547$ (12) \AA
$\beta=111.195(13)^{\circ}$
$V=839.6(2) \AA^{3}$
$Z=4$
$D_{x}=1.560 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5281 reflections
$\theta=3.3-26.0^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=100.0$ (1) K
Irregular, colourless
$0.4 \times 0.4 \times 0.3 \mathrm{~mm}$
Data collection
Oxford Diffaction Xcalibur diffractometer

$$
R_{\mathrm{int}}=0.013
$$

ω scan

$$
\theta_{\text {int }}=26.0^{\circ}
$$

5281 measured reflections
1637 independent reflections
$h=-10 \rightarrow 10$
$k=-16 \rightarrow 16$
1417 reflections with $I>2 \sigma(I)$

$$
l=-9 \rightarrow 6
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0418 P)^{2}\right. \\
\quad \\
\quad 0.2056 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.18 \text { e } \AA^{-3} \\
\Delta \rho_{\min }=
\end{array} \mathrm{e}^{-0.22 \mathrm{e}^{-3}}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.078$
$S=1.08$
1637 reflections
155 parameters
All H-atom parameters refined

In (I), the $\mathrm{C}-\mathrm{H}$ bond distances are in the range 0.917 (17)$0.985(19) \AA$ and the $U_{\text {iso }}(\mathrm{H})$ values are in the range $0.020(4)-$ 0.052 (6) \AA^{2}. For compound (II), the ranges are 0.942 (16)0.983 (17) \AA and 0.013 (3)- 0.031 (4) \AA^{2}, respectively.

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffrac-

Table 3
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$) for (II).

N7-N8	$1.355(1)$		
C2-C1-C6	$120.8(1)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.6(1)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$117.5(1)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.9(1)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$123.4(1)$	$\mathrm{N} 8-\mathrm{N} 7-\mathrm{C} 1$	$119.64(9)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 12$	$119.2(1)$	$\mathrm{N} 8-\mathrm{N} 7-\mathrm{C} 11$	$117.22(10)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 12$	$117.4(1)$	$\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 11$	$123.15(10)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$117.8(1)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 7-\mathrm{N} 8$	$132.12(11)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 12-\mathrm{O} 13$	$157.2(1)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 7-\mathrm{N} 8$	$-51.32(15)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 12-\mathrm{O} 14$	$158.7(1)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 12-\mathrm{O} 13$	$-22.4(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 12-\mathrm{O} 14$	$-21.7(2)$

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 10^{\text {iv }}$	0.97 (1)	2.57 (1)	3.132 (2)	117 (1)
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\text {v }}$	0.96 (1)	2.41 (1)	3.198 (2)	139 (1)

Symmetry codes: (iv) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (v) $-x+2,-y+1,-z$.
tion, 2002); data reduction: CrysAlis RED; structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1523). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1995). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 685-706. Dordrecht: Kluwer Academic Publishers.
Anulewicz, R., Krygowski, T. M., Gawinecki, R. \& Rasała, D. (1993). J. Phys. Org. Chem. 6, 257-260.
Cady, H. H. (1967). Acta Cryst. 23, 601-609.
Daszkiewicz, Z., Kyzioł, J. B., Prezhdo, V. V. \& Zaleski, J. (2000). J. Mol. Struct. 553, 9-18.
Daszkiewicz, Z., Nowakowska, E., Prezhdo, V. V. \& Kyzioł, J. B. (1995). Pol. J. Chem. 69, 1437-1446.
Daszkiewicz, Z., Zaleski, J., Nowakowska, E. M. \& Kyzioł, J. B. (2002). Pol. J. Chem. 76, 1113-1125.
Growenlock, B. G., Pfab, J. \& Young, V. M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 915-919.
Mialocq, J. C. \& Stephenson, J. C. (1986). Chem. Phys. 106, 281-291.
Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Version 1.170. Oxford Diffraction, Wrocław, Poland.
Prezhdo, V. V., Bykowa, A. S., Głowiak, T., Koll, A. \& Kyzioł, J. B. (2001). J. Struct. Chem. 42, 611-616.

Sheldrick, G. M. (1990). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Williams, D. H. L. (1982). In The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives. Chichester: Wiley.
Zhukhlistova, N. E., Prezhdo, V. V. \& Bykowa, A. S. (2002). Crystallogr. Rep. 47, 72-75.

